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Summary

The improving effects of addition of nano-wollastonite on some fire properties of

medium-density fiberboard (MDF) were studied in this work. Nano-wollastonite was

added at four levels (2%, 4%, 6%, and 8%). The size range of at least 70% of nano-

wollastonite particles were 30 to 110 nm. The results showed statistically significant

improving effect of nano-wollastonite on time to onset of ignition. The improving effect

was primarily attributed to an increase in thermal conductivity of board containing

nano-wollastonite. This increase in turn resulted in better curing of resin, and a higher

integrity of fibers thereof. Moreover, nano-particles provided a surface with reduced

combustibility and therefore, penetration of fire to the inner layers of boards was del-

ayed, thus improving fire properties. High and significant correlations were found

between thermal conductivity coefficients of boards with different fire properties. It

was concluded that for applications where fire properties are of prime importance,

nano-wollastonite content of 8% can be recommended. Moreover, further studies are

needed to compare and standardize the results obtained from the apparatus used here

with those obtained from internationally recognized apparatuses like cone calorimeter.

K E YWORD S

medium-density fiberboard (MDF), minerals, nano-materials, thermal conductivity coefficient,

Wollastonite

1 | INTRODUCTION

Wood is a versatile material with numerous applications and there-

fore, its plantation and harvesting is vastly studied all over the

world.1-6 The idea of protecting solid wood, and wood- and cellulose-

based materials against different physical and chemical damages and

attacks of living micro-organisms is as old as human civilizations.7-11

Over time, numerous methods and materials have been examined and

developed. Some methods involved changing the pathway of pyrolysis

of wood.12 This method is considered as one of the easiest and inex-

pensive ways to treat wood to reduce flammability. In another

method, the surface of wood is protected with an isolating layer. Intu-

mescent coatings are also categorized in this method. Alteration in

the thermal properties of wood through changing its density, specific

heat, and thermal conductivity is another one that can also be used to

improve fire retardancy in wood and wood-based composites. Other

techniques can involve reduction in wood combustion by diluting

pyrolysis gases or inhibiting the chain reactions of burning. Though

several methods and techniques have been developed so far, research

for more effective and non-toxic materials to improve fire retardancy

is still in progress.11,13-17

Improving effects of nanotechnology on different materials have

been intensively and vastly studied.6,18-22 Wood-based materials and

composites are no exception.23,24 Different nano-metals and nano-

minerals were utilized to improve the heat-transfer property in solid

wood species and wood composite mats; they were also used to

improve biological resistance against different deteriorating

fungi,7,9,25-28 to decrease hot-press time as a costly bottle-neck in
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nearly all wood-composite manufacturing factories, and to increase

thermal conductivity in solid wood and composite mats.29

In this connection, wollastonite is a calcium inosilicate mineral

(CaSiO3), which contains small amounts of iron, magnesium, and

manganese substituting for calcium, that has been proved as non-

toxic and harmless for both human health and wildlife.30-34

Nano-wollastonite was reported to significantly improve the biological

resistance of wood and wood-based composites against wood-

deterioratingfungi,35,36 to improve thermal conductivity, physical and

mechanical properties of wood-basedcomposites,36 and to give prom-

ising results in lowering ignitability of wood and composites at high

retention levels.37-41 However, the authors came across little or no

research projects studying the outcome of nano-wollastonite (NW) at

lower levels. Therefore, the present research work was carried out to

find out if lower contents of NW can have improving effects on fire-

properties of medium-density fiberboard (MDF) as a vastly used

wood-based composite around the world.

2 | MATERIALS AND METHODS

2.1 | Board production

Wood fibers were purchased from the Sanaye Choobe Khazar Company

in Iran (MDF Caspian Khazar). They were comprised a mixture of five spe-

cies, namely beech (Fagus orientalis), alder (Alnus subcordata.), maple (Acer

sp.), and hornbeam (Carpinus betulus) from the neighboring forests of

Amol city (Mazandaran Province), and poplar (Populus nigra) from private

forest plantations. MDF boards were fabricated with 10 mm in thickness,

and a target density of 750 kg/m3. A HT/MLM-170 hot press

(Mehrabadi Mfg. Co., Tehran) was used with a nominal pressure of

160 bars. Hot- press temperature was 160�C, and duration was 7minutes,

for all treatments. Urea-formaldehyde resin (UF), a thermosetting resin

from Sari Resin Manufacturing Company (Sari, Iran) was sprayed on

fibers; it had a concentration of 10%, a viscosity of 200 to 400 cP, a gel

time of 47 seconds, and a density of 1.277 g/cm3. Five replicate boards

were produced in random order for each treatment. From each board,

two fire specimens were cut to measure fire properties.

For nano-wollastonite-treated (NW) boards, NW was mixed with

resin and then sprayed on fibers. Four NW concentrations (2%, 4%, 6%,

and 8%) were used based on dry weight of UF resin. NW gel was pro-

duced by Vard Manufacturing Company of Mineral and Industrial Prod-

ucts (Iran). At least 70% of particles ranged from 30 to 110 nm, with the

remaining 30% bigger than this range. Formulation of NW gel has been

reported by Taghiyari et al.7 Boards were conditioned in an environmen-

tal room (25�C ± 2�C, 50% ± 3% relative humidity) to reach an equilib-

rium moisture content of 7.5% ± 2%, before the fire property tests.

2.2 | Fire property tests

Studies on fire properties and heat release of newly developed com-

posites and materials are usually reported based on cone calorimeter,

single item test, room corner test, or the Steiner tunnel test. However,

not all material testing laboratories can afford these costly tests and

apparatuses. Therefore, the idea of designing an easy apparatus and

method was brought up so that every laboratory can test the surface

flammability of new composites. Slide Fire Test Apparatus (SFTA) was

designed and built, using piloted ignition, with the primary idea to test

different surface flammability properties in low costs39,40 (Figure 1).

Still, it is to be noted that SFTA does not provide some information

such as heat release rate, as other internationally accepted appara-

tuses like cone calorimeter does, and therefore, further comparing

studies should be carried out to come to a firm conclusion as to the

functionality and effectiveness of new retardants found promising by

SFTA. However, the ignitability of surfaces treated with newly devel-

oped retardants can easily and trustfully be measured by SFTA for

comparison purposes with the results obtained from un-treated sur-

faces. Therefore, SFTA can give a primary idea with the lowest cost

possible, and an easy way for comparison for new researchers, as to

the impact of new fire retardants and additives. Natural gas was used

as the fuel; it mainly comprised of methane CH4 (90%-98%). The pro-

ducer reported that other hydrocarbons accompanied methane (C2H6:

1%-8%; C3H8: 2%; H4H10 + C5H12: less than 1%; and also N2 + H2S

+ H2O: less than 1.5%). The gas flew steadily at 0.097 lt/s through a

Bunsen-type burner hold at 45� to burn specimens that were verti-

cally positioned on a holder. The internal diameter of the burner was

11 mm. The burner was mounted on a slide, easily moving back and

forth from the specimen. Once gas was ignited with the exact flow

rate, and specimen was positioned firm in place, the slide was moved

forward so that specimen was exposed to fire from the burner. The

time it took for the specimen to develop a visible flame was measured

as the “time to onset of ignition.” This property shows ignitability of a

surface. When the ignitability of a control surface is compared to that

of a retardant-treated surface, comparison can be made as to the

effectiveness of the retardant. Similarly, the time it took for the speci-

men to glow was registered as the “time to onset of glowing.” Each

specimen was exposed to piloted fire for 120 seconds in accordance

with the standard ISO 11925-3. Once the fire-exposing time was up,

a slide on which the burner was mounted, was pulled back to discon-

tinue fire-exposure immediately. However, the time that evident fire

continued on each specimen was registered as “duration of burning.”

This property indicates the potential of a surface to spread fire across;

that is, how long a surface can keep fire on it when a source fire is

extinguished. The shorter a surface keeps an evident fire, the better,

as this reduces the potential of spreading fire across a panel. Once the

flame on each specimen was extinguished, and it was cooled off, the

length and width of the burnt area were measured.

2.3 | Thermal conductivity measurement

Thermal conductivity was measured using a KD2-Pro Thermal Proper-

ties Analyzer device, produced by Decagon Devices Inc. (USA). Heat

was applied to a single needle (TR-1) for a time (th). The temperature

was monitored in the needle of the device all the way during heating
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and for an additional time equal to th after heating. The temperature

during heating was then calculated by Equation (1).35

T =m0 +m2t+m3lnt ð1Þ

where m0 is the ambient temperature during heating, m2 is the rate of

background temperature drift, and m3 is the slope of a line relating

temperature rise to logarithm of temperature.35

The thermal conductivity was then calculated by Equation (2).

k =
q

4πm3
ð2Þ

where k is the thermal conductivity ( W
m �K), q is the heat input (W), and

m3 is the slope of a line relating temperature.35

2.4 | SEM imaging

A scanning electron microscope (SEM; Hitachi SU8010, Japan) was

used at the Thin-Film Laboratory, FE (field emission)-SEM lab, School

of Electrical and Computer Engineering, The University of Teh-

ran.35,41,42 The SEM apparatus was equipped with a field-emission

cathode in the electron gun, providing a narrow probe beam to

improve spatial resolution and to minimize sample charging and dam-

age. Preparation of specimens included mounting them on an alumi-

num stub with double-sided tape and sputter coated with a gold

alloy.35,41,42

2.5 | Statistical analysis

Statistical analysis was carried out by a SAS software, version 9.2

(Cary, NC USA). One-way analysis of variance (ANOVA) was per-

formed on the average values to ascertain significant differences at

the 95% level of confidence. Hierarchical cluster analysis, including

dendrograms and Ward methods (using squared Euclidean distance

intervals), were carried out using SPSS/18, version 18 (IBM, USA). The

scaled indicator above the cluster shows similarities and differences

on a number-value basis between treatments. Smaller numbers on the

scale indicator mean more similarity, while larger numbers indicate

that there are differences to a greater extent. When different treat-

ments are connected by a vertical line on smaller numbers on the

scaled indicator, it means that these treatments are overall considered

similar, and when they are connected on larger numbers, they may be

considered quite different. Fitted-line, contour, and surface plots were

designed in Minitab software, version 16.2.2 (Minitab Inc., USA).

3 | RESULTS AND DISCUSSION

Results of the present study clearly showed that there was a statisti-

cally significant difference at 95% level of confidence in the time to

onset of ignition among the treatments (Figure 2A). The highest and

lowest times to onset of ignition were observed in NW-8%

(25 seconds) and control (11.7 seconds) boards, respectively. That is,

the ignitability of the surface was decreased to less than half by addi-

tion of 8% nano-wollastonite to UF resin.

F IGURE 1 Schematic picture of the slide fire testing apparatus (SFTA) (invented under Iranian Patent No. 67232; approved by Iranian
Research Organization for Science and Technology under license No. 3407)39
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Time to onset of ignition was increased as NW-content increased,

though in a few cases the increase was not statistically significant.

This increase was attributed to some reasons. Firstly, addition of NW

to boards improved thermal conductivity coefficient (Table 1).35,43

This improvement made the fibers on the surface of MDF boards to

better stuck together and kept firmly in their position, consequently a

higher integrity of fibers in composite was achieved, and eventually

an improvement in mechanical properties was reported.35,44 This bet-

ter integrity of fibers delayed the process of catching fire on the sur-

face layer of the boards containing NW; in other words, loose fibers

in control boards tend to catch on fire more easily in comparison with

more integrated fibers in NW-treated boards. Scanning electron

microscopy (SEM) showed loose fibers on the surface of control MDF

boards (Figure 3A), while NW-treated board showed higher integrity

among surface fibers (Figure 3B). In this connection, high and signifi-

cant correlation was calculated between thermal conductivity coeffi-

cients of different treatment boards with the fire properties measured

in the present project. The R-square between thermal conductivity

coefficients and time to onset of glowing was as high as 98.7%

(Figure 4). Furthermore, it has been reported that NW makes bonds

with the wood cell-wall polymers.42 In that work, a strong adsorption

of NW on cellulose polymers was calculated. As reported, these new

chemical bonds largely contribute to improvements in the physical

and mechanical properties of composite panels.35,43-46 The ultimate

outcome of the formation of new bonds would be a better integrity

among fibers in the composite matrix, resulting in an improvement in

fire properties. In addition, NW had a second impact on increasing the

time to onset of ignition by transferring the heat at the point nearest
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4 ESMAILPOUR ET AL.

http://wileyonlinelibrary.com


to the piloted ignition throughout the body of specimens. That is,

accumulation of heat to reach the ignition level was significantly

delayed.12

Similarly, a statistically significant improvement in time to onset

of glowing was observed by an increase in NW-content of boards

(Figure 2B). The highest and lowest times to onset of glowing

occurred in NW-8% (74.7 seconds) and control (44 seconds) boards,

significantly. This increase in time to onset of glowing was attrib-

uted to the same reason that was discussed above for the time to

onset of ignition. Contour and surface plots clearly demonstrated an

increasing trend in both times to onset of ignition and glowing ver-

sus thermal conductivity coefficients (ie, NW-content) increased

(Figure 5A,B).

With regard to fire property of duration of burning once the pil-

oted fire was removed from specimens, the highest and lowest dura-

tions were in agreement with the improvements achieved in the two

properties discussed above as a result of addition of NW (Figure 2C).

It is to be noted that for the two properties of times to onset of igni-

tion and glowing, the improvement would be in form of an increase in

the time values, while improvement in duration of burning would be

in form of a decrease. The highest duration of burning was in control

boards (2 seconds). The lowest duration was found in boards with the

highest NW-content (0.3 second). This indicated that the time needed

for flame to spread across the surface of NW8%-treated MDF panels

would be improved to more than 500% in comparison to control

panels. This indicated the effect of the addition of NW in shortening

the time to the extinguishment of a visible fire on specimens. In this

regard, the high duration of burning in the control boards is attributed

to their lower mechanical properties.35 That is, fibers on surface of

boards were not as strongly integrated to each other as in boards with

NW-content, resulting in an easier catching on fire and higher dura-

tion of burning in the control boards. Moreover, the mineral nature of

NW particles provided a surface with reduced combustibility against

penetration of fire to inner parts of boards, still decreasing duration of

burning. It is also hypothesized that inclusion of NW may have

increased the density and consequently created a blockage to volatile

emissions from the subsurface of the pyrolysis zones, delaying pyroly-

sis. In this connection, former studies reported a significant decrease

in both gas and liquid permeability of nano-treatedcomposites,45

TABLE 1 Thermal conductivity coefficient (W m−1 K−1) in the five treatments of the medium-density fiberboards (NW = nanowollastonite
content)35

MDF board treatments Control NW-2% NW-4% NW-6% NW-8%

Thermal conductivity coefficient (W m−1 K−1) 0.105 (C)* 0.113 (B) 0.119 (B) 0.125 (A) 0.136 (A)

Note: *A, B, and C denote statistically significant differences (P < .05).

F IGURE 3 SEM images of untreated A, and NW-treated B, MDF boards: loose wood fibers on the surface of untreated (control) board are
characteristically shown42
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F IGURE 6 Cluster analysis of the five treatment boards based on fire properties measured in the present research project (NW,
nanowollastonite; 2, 4, 6, and 8 = nanowollastonite contents)
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indicating the potential of the above mentioned hypothesis. However,

as density profile of panels was not measured in the present study,

further studies should be carried out to come to a final conclusion in

this regard.

Width and length of the burnt areas followed the same overall

trend as the three properties were already discussed (Figures 2D,E);

that is, increase in NW-content had a significant improving effect on

length and width of the burnt area, though the improvement at lower

NW-content (2%) was not statistically significant.

Cluster analysis based on all fire properties measured in the present

work illustrated significantly different clustering of NW-8% treatment in

comparison to other treatment boards (Figure 6) because the vertical

connecting line is on the number “25” based on the scaled indicator.

Other boards with NW-contents (2%, 4%, and 6%) showed similar clus-

tering, as the vertical connecting lines among all these three treatments

are less than the number “5” based on the scaled indicator. It can there-

fore be concluded that the overall fire properties of these three treat-

ments can be considered rather similar, though some differences can be

observed when each fire property is considered separately and individu-

ally. Control boards were clustered significantly different with all NW-

treated boards. As MDF panels produced with UF resin are susceptible

to vapor and water and therefore they are mainly used for interior

design. Though there are not much difference between NW6% and

NW8% in some of the fire properties measured here, in order to provide

more protection against fire, the highest NW-content of 8% is rec-

ommended. Previously, Taghiyari et al35 recommended NW-content of

6% to the industry for improving the mechanical properties. Comparison

of the clustering analysis based on fire properties with that based on

physical and mechanical properties in the previous study37 revealed that

the optimum level of NW-content would be different, if fire or mechani-

cal properties are of major importance.

4 | CONCLUSION

Nano-wollastonite (NW) was added to medium density fiberboard (MDF)

at four levels of 2%, 4%, 6%, and 8%, based on the dry weight of urea-

formaldehyde resin, to investigate its effects on fire properties in compari-

son to untreated MDF boards. Three properties of times to onset of igni-

tion and glowing, as well as duration of burning, were significantly and

steadily improved as NW-content was increased in MDF boards. The two

properties, width and length, of the burnt area showed a slight improve-

ment only at higher NW-contents of 6% and 8%, respectively. The

improvement in fire properties was partially attributed to the improve-

ment in thermal conductivity of boards, achieved as a result of the addi-

tion of NW. The improved thermal conductivity in turn resulted in a

better integration of fibers, and ultimately fire properties were signifi-

cantly improved. Moreover, nano-particles provided a surface with

reduced ignitability, partially adding to the improving effect. High and sig-

nificant R-square values were found between thermal conductivity coeffi-

cients of the five treatments with most of the fire properties. It was

concluded that, increasing time to onset of ignition, along with decreasing

duration of burning when the piloted fire is removed, can be considered

as two important fire properties that were improved. In this connection,

where fire properties are of major importance, an 8% content of NW

should be recommended to provide the highest improvement. However,

as SFTA is a newly-developed apparatus for primary studies and screen-

ing tests on new materials, further studies on large-size specimens with

internationally recognized test methods and apparatuses like cone calo-

rimeter should be carried out to come to a final conclusion in to the effec-

tiveness and the best loading of NW in MDF panels.
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